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1 Introduction

Bayes’ rule is the standard for updating prior beliefs upon receiving new information in

classical economic models. Owing to its appeal, Bayes’ rule is the objectively correct belief

updating process and has microeconomic foundations in decision-making under uncertainty

(Ortoleva 2024). However, the behavioral and experimental economics literature provides,

perhaps unsurprisingly, substantial evidence that individuals do not behave in accordance

with the Bayesian paradigm (Benjamin 2019). Examining how people incorporate new in-

formation into their existing beliefs, relative to Bayes’ law, is critical to the formalization

of new belief updating models to explain individual information synthesis and subsequent

decision-making.1

Our objective here is to consider how an individual’s confidence affects the belief-updating

process and the resultant updated belief. We consider two notions of confidence. First, we

consider confidence in the prior belief distribution as being related to the dispersion of

the belief distribution; specifically, for some distributions, greater confidence implies less

dispersion in the belief distribution.2 This notion of confidence offers an intuitive result

in which a Bayesian agent updates more when less confident in a prior belief.3 The most

well-known example is the updating of a Gaussian prior belief distribution with a signal

drawn from a Gaussian distribution. When updating, an agent places more weight on the

prior belief when there is less variance in the prior distribution.4 Our analysis examines

a Bernoulli distribution, for which the greatest updating occurs given a 50% prior belief

(maximal uncertainty regarding a binary state).

Second, we consider confidence in prior beliefs as represented by uncertainty over multiple

prior beliefs. In this setting, an agent has a set of prior beliefs considered plausible and
1For example, in finance and macroeconomics, Gennaioli and Shleifer’s (2010) formalization of Kahneman

and Tversky’s (1972b) representativeness heuristic allows Bordalo, Gennaioli, and Shleifer (2018) to develop
the notion of diagnostic expectations and explain credit cycles. That broad notion of diagnostic expectations
allows Bianchi, Ilut, and Saijo (2024) to better reconcile macroeconomic models with data than with use of
the rational expectations standard.

2Variance (or standard deviation) is a useful measure of dispersion for a model of Bayesian updating.
3Specifically, the difference between the mean updated belief and the mean prior belief is increasing in

the variance of the prior belief distribution.
4Other well-known cases include (i) a beta prior belief distribution with signals drawn from a binomial

distribution, and (ii) a Dirichlet prior distribution and a signal drawn from a multinomial distribution.
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assigns probability weights to these priors.5 If one is only interested in average updated

beliefs, a counter-intuitive result obtains: uncertainty over multiple priors does not affect

how a Bayesian agent updates average beliefs as long as the average prior belief remains

unchanged. To update beliefs, a Bayesian agent updates each individual prior and the

beliefs over the set of priors. But if one is only interested in the average Bayesian posterior

belief, a Bayesian agent simply updates beliefs using the average prior belief. Our focus is

on this second notion of uncertainty over multiple priors.

Our experimental treatment induces exogenous variation in confidence over multiple pri-

ors. We then elicit confidence over multiple priors with our novel incentive-compatible mech-

anism, a process that can be employed to measure confidence in any stated probability by

a subject in an experimental design. The experimental design thus allows us to explore the

relationship between confidence across multiple priors and the belief updating process.

Our belief updating task is a re-framed version of the seminal taxi-cab problem discussed

in Kahneman and Tversky (1972a). Instead of being informed of a numerical prior proba-

bility, a subject views a 10 × 10 grid consisting of black and white squares; the proportion

of white squares represents the actual probability of success (prior to any signal). In one

treatment the grid is flashed for 0.25 seconds, giving the subject only a rough sense of the

proportion.6 This feature induces multiple priors in our subjects as they are unsure of the

actual proportion of white squares. In the other treatment, the viewing time is 30 seconds,

giving subjects sufficient time to count the number of squares exactly. After seeing the grid,

we inform subjects that a square from the grid is randomly selected with uniform proba-

bility and we provide each subject with a signal on the color of their realized square (with

a fixed, symmetric accuracy of 60% or 80%).7 We then elicit each subject’s updated belief

regarding the color of the selected square before and after seeing the signal. We incentivize

the elicitation of beliefs by paying subjects a fixed amount if their stated value is within 3

percentage points of the actual prior or the true Bayesian posterior.

As stated above, our main goal is to study how one’s confidence in prior beliefs af-
5This set of weights can be interpreted as second-order prior beliefs.
6Esponda, Oprea, and Yuksel (2023) use a 0.25 second viewing time to provide a noisy signal for updating,

while we use it to induce a noisy prior.
7A symmetric accuracy rate r implies P (black signal | black square) = P (white signal |white square) = r.
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fects one’s belief-updating process. To measure confidence, we develop a novel incentive-

compatible elicitation method as follows. Following the elicitation of a subject’s point-

estimate π of the probability of an event, we offer the subject two options: a fixed payment

that is obtained when π is within 3 percentage points of the true parameter (a subjective

gamble), and a simple gamble that obtains the same fixed payment with probability q (an

objective gamble). Each subject ultimately provides a switching point q∗, above which the

subject prefers the objective gamble and below which the subject prefers the subjective

gamble. This switching point provides a measure of the subject’s confidence in their prior.8

To analyze our data, we construct two different measures to quantify the degree of over-

and under-updating relative to the Bayesian posterior. We then examine the relationship

between one’s confidence in one’s prior belief and any over- or under-updating relative to the

Bayesian benchmark. We find that higher confidence is associated with more conservative

updating. Our estimates of the Grether (1980) model further validate this result. We find

that a subject places less weight on their prior and more weight on the signals when they

view the grid for 0.25 seconds. We also find that our subjects are insensitive to uncertainty

within the prior distribution. Contrary to the Bayesian prediction, we find that our subjects

respond to confidence as represented by multiple priors but do not respond to confidence as

represented by (less) dispersion in a belief distribution.

We contribute to the existing literature in three main ways. First, we establish the

relationship between confidence over multiple priors and belief updating. While results

for prior mixture models are well-established, these results have not been experimentally

tested in the context of individual belief updating. Our results show that confidence over

multiple priors matters even when it should not. Second, we propose and implement a

simple incentive-compatible mechanism to elicit confidence in one’s belief. Finally, we present

empirical evidence that subjects are surprisingly overconfident in their ability to perform

Bayesian updating.

The paper is structured as follows: section 2 reviews relevant literature, section 3 de-

scribes our design in detail, section 4 presents our results, and section 5 concludes.
8We elicit confidence on both the prior belief and the updated belief. Inference on the subject’s confidence

depends on how beliefs are incentivized; we discuss this in greater detail in section 3.2.

4



2 Related Literature

The survey in Benjamin (2019) summarizes well the belief updating literature, including

studies of mistakes in probabilistic reasoning. Laboratory experiments have documented

several non-Bayesian updating patterns. Some of the more prominent biases include base-

rate neglect (Kahneman and Tversky 1972b; Esponda, Vespa, and Yuksel 2024), conservatism

bias (Phillips and Edwards 1966; Augenblick, Lazarus, and Thaler 2024), correlation neglect

(Eyster and Weizsacker 2016; Enke and Zimmermann 2019), confirmation bias (Nickerson

1998; Charness and Dave 2017), and motivated beliefs (Eil and Rao 2011; Coutts 2019;

Thaler 2021; Charness, Oprea, and Yuksel 2021; Möbius et al. 2022). Agranov and Reshidi

(2023) also show that in a sequential updating problem with multiple signals, the order in

which the signals are presented to the subjects affects the final belief profile.9 Beyond the lab,

a growing literature documents non-Bayesian belief updating in finance (Bordalo, Gennaioli,

and Shleifer 2018; Augenblick and Lazarus 2023), job search (Conlon et al. 2018; Brown and

Chan 2024), and sports-betting markets (Augenblick and Rabin 2021; Augenblick, Lazarus,

and Thaler 2024).

To accommodate these belief-updating biases, behavioral economists have constructed

numerous non-Bayesian updating models (Grether 1980; Rabin and Schrag 1999; Epstein,

Noor, and Sandroni 2010; Cripps 2018; Woodford 2020; Levy, Barreda, and Razin 2022).

Among these, the most popular model for empirical analyses is that of Grether (1980), which

accommodates several updating biases and can be estimated with linear regression. We apply

this model to our environment in section 3.6 and present the results in section 4.3.

When there is a set of prior beliefs, the ambiguity literature has proposed a few non-

Bayesian updating models. One is termed Full Bayesian Updating (Pires 2002; Gilboa

and Marinacci 2016) in which an agent ignores the second-order belief over the priors and

simply updates each prior beliefs with Bayes’ rule. Another is Maximum Likelihood Updating

(Gilboa and Schmeidler 1993), in which an agent selects the most likely prior after observing

the signal. In contrast to these extreme models of belief updating, Kovach (2024) introduces

Partial Bayesian updating, a generalized version of Full Bayesian Updating and Maximum
9This is a violation of the divisibility property in belief updating (Cripps 2018).
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Likelihood Updating, in which an agent considers a subset of priors deemed plausible, and

updates these priors with Bayes’ rule. Klibanoff and Hanany (2007) introduces a model of

updating that retains dynamic consistency in preferences, and Ortoleva (2012) introduces the

Hypothesis Testing model in which an agent may switch between prior beliefs upon receiving

a surprising signal.

While deviations from Bayes’ rule comprise numerous systematic patterns, we are primar-

ily interested in examining over- and under-updating relative to the Bayesian benchmark.

Benjamin (2019) notes that empirical biases in belief updating generally take two forms:

base-rate neglect, a phenomenon where people underweight the prior belief, and conser-

vatism, a tendency to under-react to new information. Base-rate neglect results in over-

updating relative to the Bayesian benchmark, while conservatism results in under-updating

relative to the Bayesian benchmark. The dominating bias then gives the direction of the

overall effect.

Our work is closely related to two recent studies that examine the causes of over- and

under-updating. Augenblick, Lazarus, and Thaler (2024) show that individuals tend to

under-infer from signals when test reliability is high (greater than 60% accuracy) and over-

infer when reliability is low (below 60% accuracy). Ba, Bohren, and Imas (2022) show that

when the number of possible outcomes or states increases, subjects tend to over-update when

there are more than two states, while subjects under-update when there are two states. In

contrast to these studies, we focus on prior confidence as an explanation for over- or under-

updating. We also diverge from these papers with our use of Kahneman and Tversky’s

(1972a) famous taxi-cab problem, while the aforementioned studies both use some vari-

ant of the balls-and-urn (or book-bag-and-poker-chip) design (Phillips and Edwards 1966)

commonly used in belief updating studies (Benjamin 2019).10 We note that while the exper-

iments of these two papers were conducted online, our study was conducted in-person with

a university subject pool.11

Finally, the aforementioned papers employ a noisy cognition model (Woodford 2020; Enke

and Graeber 2023) to explain over- and under-updating. In particular, Enke and Graeber
10Kahneman and Tversky’s (1972a) task is also recently used by Esponda, Vespa, and Yuksel (2024) and

Agranov and Reshidi (2023).
11Charness et al. (2023) discuss the merits of in-person laboratory experiments.
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(2023) argue that when humans are cognitively uncertain they tend toward a cognitive

default. Our results cannot be explained by the standard model of noisy cognition alone.

3 Experimental Design and Hypotheses

Our design investigates whether confidence in one’s prior influences how one updates beliefs

in tasks with two components: a belief-updating exercise and a confidence-in-stated-belief

elicitation. In each task, subjects provide four probability reports in the following order:

(1) their prior belief, (2) their confidence in their prior belief, (3) their updated belief after

receiving a signal, and (4) their confidence in their updated belief. In this section we first

describe the belief-updating exercise, describe the elicitation method, and conclude with our

hypotheses.

3.1 Belief Updating

Our belief updating task is a version of Kahneman and Tversky’s (1972a) taxi-cab problem.

To make the task less abstract, we follow the framing of Esponda, Vespa, and Yuksel (2024)

in which subjects are asked to play the role of a manager who is evaluating whether a project

is a success or failure. Subjects are told that each square in a 10×10 grid represents a project,

with white representing a success and black a failure (see figure 1). We induce prior beliefs

by showing a grid realization to the subject. The proportion of successes to failures varies

across tasks (grids): the number of successful projects is one of 0, 20, 40, 50, 70, or 90.

We included a task with 0 successful projects, so correct responses are straightforward, to

evaluate a subject’s comprehension of the environment.

We use a within-subject design to study how an individual updates beliefs given vari-

ous levels of confidence. To achieve this, we have two treatment conditions that subjects

complete in order. Subjects first complete tasks in a Low Confidence treatment that flashes

each grid for 0.25 seconds. Subjects then complete tasks in a High Confidence treatment

that displays each grid for 30 seconds (subjects are allowed to proceed after five seconds).12

12We chose 30 seconds because it allows a subject to tally a grid twice. In our experiment, most subjects
proceeded without using all 30 seconds to view the grid.
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Figure 1: An example grid displayed in an experimental task

The difference in the duration of the display of the grid induces variation in one’s confidence

in one’s prior, hence the treatment names.13 We postulate that confidence is lower in the

Low Confidence treatment relative to the High Confidence treatment, the latter giving sub-

jects sufficient time to tally squares. All subjects complete the Low Confidence treatment

before the High Confidence treatment to minimize the formation of beliefs regarding our

experimental parameters.

After we show a subject a realized grid, we tell the subject that a project (i.e., a square

from the grid) has been randomly selected with equal probability. The subject is then asked

to state the probability that the selected project is a success. We refer to this reported

probability as the subject’s prior belief. We pay $3 if this stated probability is within 3 per-

centage points of the actual probability and zero otherwise (Dufwenberg and Gneezy 2000;

Charness and Dufwenberg 2006). We choose this simple incentive-compatible mechanism to

simplify the confidence-in-beliefs elicitation method which we discuss in section 3.2. More-

over, studies have shown that complex belief-elicitation methods like the binarized scoring

rule (Hossain and Okui 2013) can bias subjects’ reported beliefs (Danz, Vesterlund, and

Wilson 2022), despite being incentive compatible in theory.
13Another possible way to induce different degrees of confidence in the prior belief is to inform the subject

that the prior is either 75% or 25% (Liang 2024). We induce the multiple prior in this manner because it
avoids describing the prior in a compound manner, which is known to pose challenges for subjects in the
context of risk (Halevy 2007).

8



Next, to permit belief updating, we tell subjects that they will be shown a computer test

result to help with their evaluation of the selected project. Subjects are assigned randomly

to a treatment with either a 60% or an 80% test reliability.14 The test reliability indicates

the proportion of times when the computer test correctly predicts whether the project is

a success or a failure with symmetric false positive and false negative rates. For example,

when the reliability is 80%, if the selected project is a success (failure) the test result will be

positive (negative) with 80% chance and negative (positive) with 20% chance.

After informing a subject of the result of the test (positive or negative), we ask the

subject to report the probability of the selected project being a success, which we refer to

as the subject’s update. We pay each subject $3 for reporting a probability within three

percentage points of the Bayesian posterior. When the prior is non-degenerate, we elicit the

subject’s updated belief for both positive and negative test results. We have one task where

the prior is degenerate at 0; in this case, we only elicit the update when the test result is

positive. Each subject thus completes eleven tasks in each of the two treatments.

3.2 Confidence Elicitation

We elicit confidence after each belief elicitation—that is, after a subject states their prior

belief and also following the updated belief.15 To elicit a confidence-in-stated-belief, we offer

the subject a choice between either (i) a subjective gamble, which obtains $3 if their stated

belief is within 3 percentage points of the true value, and (ii) an objective gamble that

obtains $3 with probability q and nothing otherwise.

We seek to identify the point q∗ at which a subject is indifferent between the subjective

and objective gambles by varying q. We then interpret q∗ as the confidence level for an

expected utility maximizer. For example, if the subject is 70% confident that their stated

prior belief is within 3 percentage points of the actual prior (or, following the signal, the

Bayesian posterior), the subject expects to be paid 70% of the time. Thus the subject should

only accept lotteries that pay $3 at least 70% of the time. By reporting 70% in the confidence

elicitation, a subject ensures that they will only receive lotteries that obtain $3 at least 70%
14We held signal reliability constant for each subject to minimize potential confusion.
15This captures confidence over multiple priors.
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of the time.

We elicit the switching point q∗ using a BDM mechanism (Becker, DeGroot, and Marschak

1964) following Healy’s (2020) instructions; we explain the BDM with a multiple price list

(Holt and Laury 2002) to improve comprehension of the mechanism. Because subject com-

prehension of the BDM mechanism may be a concern (see Cason and Plott 2014), we include

a simple question with no successful projects where the theoretically optimal response is ob-

vious. In this question, the grid that is shown contains all black squares, and subjects should

have maximal confidence in their belief. Our data on the degenerate prior case demonstrates

that our subjects have an excellent understanding of the mechanism and the tasks.

Our confidence elicitation is incentive-compatible for standard expected utility maximiz-

ers but also for some non-expected utility maximizers. Let U(m, q) be the utility of a simple

gamble that obtains monetary payoff m with probability q.16 For our confidence elicitation

method to be incentive-compatible, we require the three following assumptions. First, the

agent only has preferences over monetary payoffs and the probabilities of winning. For ex-

ample, we assume that the agent does not have a preference to earn money for the sake

of merit-based self-signaling (e.g., Bénabou and Tirole 2006), wherein the agent will report

higher confidence. Second, we assume utility is strictly increasing in q. This assumption

allows us to interpret q∗ as the confidence, and the strict condition ensures that the agent is

not indifferent between two different values of q∗. Our third and most substantial assump-

tion is that the agent is ambiguity neutral (Ellsberg 1961). The subjective gamble over one’s

stated confidence in the belief elicitation task relies on subjective probabilities, whereas the

alternative gamble is based on an objective probability of winning $3. When an agent is

ambiguity averse (seeking), the agent will report a lower (higher) q∗ than the agent’s true

confidence.

In summary, our confidence elicitation method consists of two stages that can be used for

belief elicitation in any setting with a verifiable truth. In the first stage, each subject states

their belief (i.e., a probability report) or makes a guess that is incentivized. In the second

stage, each subject is offered a choice of sticking to their reported probability or a payoff-
16In the case of expected utility theory, U(m, q) = q · u(m) + (1 − q) · u(0) for some function u that

expresses the utility of each respective payoff.
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equivalent simple gamble that obtains q of the time. Instead of using alternatives such as a

quadratic or a binary scoring rule (see Brier 1950; Hossain and Okui 2013), we choose our

particular incentive-compatible mechanism for its intuitive appeal and ease of comprehension.

We simply propose paying a subject if their guess is within a reasonably small interval of

a correct value because a subject can readily recognize that truthful revelation of their

confidence is in their best interest (Danz, Vesterlund, and Wilson 2022).

3.3 Session Summary

After we presented the instructions to subjects, they responded to three comprehension check

questions and finally three practice tasks (with Low Confidence treatment) to familiarize

themselves with the interface and the task. Later, when subjects begin the High Confidence

treatment, they complete one practice question before the paid tasks.

For the main experiment, each subject completes twenty-two tasks; the eleven in each

treatment are presented in a random order. Each of these tasks involves four probability

reports: a prior belief, an updated belief, and a confidence elicitation for each of these prior

and updated beliefs. Subjects simply type an integer between 0 and 100 in a text box to

represent a percentage. For each probability report, we randomly select one of the twenty-

two tasks for payment. Because these four draws are independent, the probability reports

that we pay generally correspond to different tasks.17 Following the updating tasks, subjects

complete a demographic questionnaire.

3.4 Theory: Confidence and Bayesian Updating

We provide a model to formalize our notion of confidence, reflecting uncertainty over multiple

priors that relates to our experiment; appendix A offers a more general model. Consider a

binary state space Ω := {S, F} that corresponds to the randomly-selected project being either

a success or a failure. Consider an agent who is uncertain about their prior belief about the

proportion of successful projects, π0 := P (S). Let us assume that the agent considers a finite
17We did this to avoid hedging behavior within each task as it is possible for subjects to hedge in reporting

the prior and their updated beliefs. For example, if subjects believe that there are two possible values for
the prior they can report one of the priors and report the updated belief derived from the other prior belief.
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set Π0 ⊂ [0, 1] of N possible priors π0,i. The agent has a belief distribution over Π0, assigning

subjective probability mass k0,i to prior π0,i for all i ∈ {1, . . . , N}. Ultimately the agent’s

prior belief π0 about the project being a success is a weighted average of prior beliefs

π0 :=
N∑
i=1

k0,iπ0,i.

The agent receives an informative signal σ ∈ {σP , σN}. Define the conditional probability

of observing signal s conditioned on the project being a success or a failure as P (σ|S) and

P (σ|F ). The posterior belief is also a weighted average of posteriors. To obtain this posterior,

the agent must update each prior π0,i to a posterior π1,i as well as update each respective

prior weight k0,i to a posterior weight k1,i. Intuitively, the signal provides information about

both the project type and the relative likelihood of the priors. However, for a Bayesian

agent, updating with the average prior belief is equivalent to the aforementioned procedure.

Proposition 1. The average Bayesian posterior after observing signal σ is

πBayes
1 (σ) := P (S|σ) =

N∑
i=1

kBayes
1,i (σ)πBayes

1,i (σ),

which is the same as updating with the average prior belief.

Proof. Let us update each prior π0,i and its respective weight k0,i individually using Bayes’

rule to obtain

πBayes
1,i (σ) := Pi(S|σ) =

π0,iP (σ|S)
Pi(σ)

and kBayes
1,i (σ) :=

k0,iPi(σ)

P (σ)
,

where P (σ) = π0P (σ|S) + (1− π0)P (σ|F ) is the probability of observing signal σ given the

mixture prior belief distribution or the average prior belief π0, while Pi(σ) = π0,iP (σ|S) +

(1− π0,i)P (σ|F ) is the probability of observing signal σ given prior π0,i. We now show that

updating the beliefs of each prior and the mixture distribution over these is equivalent to

simply updating the average prior belief.

πBayes
1 (σ) =

π0P (σ|S)
P (σ)
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=

∑N
i=1 k0,iπ0,iP (σ|S)

P (σ)

=

∑N
i=1 k0,iPi(σ)π0,iP (σ|S)/Pi(σ)

P (σ)

=

∑N
i=1 k0,iPi(σ)π

Bayes
1,i

P (σ)

=
N∑
i=1

kBayes
1,i (σ)πBayes

1,i (σ).

This result is slightly counter-intuitive because the updating process is comprised of two

countervailing effects. First is the convexity or concavity of the Bayesian updating function of

each individual prior. In our task, when a positive (negative) signal is observed, the function

is concave (convex). If the weights over the prior beliefs are held fixed, less updating occurs

compared to updating given an average prior belief. Second, after a signal is observed, the

Bayesian agent will place more weight on those prior beliefs which have been revealed to

be more likely, in turn resulting in a greater degree of updating. These two countervailing

effects cancel each other out exactly, providing the result in proposition 1.

3.5 A Measure of Over-updating

Our study’s primary outcome of interest is over- or under-updating. We follow Ba, Bohren,

and Imas’s (2022) approach and define two measures of excess updating relative to the

Bayesian benchmark.18 Let π0 be a subject’s reported prior beliefs, π1 be the subject’s

reported updated beliefs, and πBayes
1 be the subject’s corresponding Bayesian posterior belief

given the prior they previously reported. Note that a subject may not have an accurate

perception of the actual prior, especially in the Low Confidence treatment. Our first measure
18Ba, Bohren, and Imas (2022) refers to these as over- and under-reaction. We prefer over- and under-

update and reserve reaction for inference or consequent action. Over-updating can arise from under-weighting
of the prior or over-reacting to a signal; these two updating biases are modeled differently under the Grether
(1980) model, each having a different implication.
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captures the magnitude of the over-update in percentage points, with

over-update :=

π1 − πBayes
1 if signal is positive, and

πBayes
1 − π1 if signal is negative.

(1)

When a positive signal is observed, we expect the subject to update upwards, that is, the

agent over-updates if the subject’s updated belief π1 is greater than the subject’s Bayesian

belief πBayes
1 , resulting in over-update > 0. Similarly, in the event of a negative signal, if the

subject’s updated belief π1 is less than the subject’s Bayesian belief πBayes
1 , this again implies

over-update > 0. Thus over-update is positive when the subject’s belief moves too far in the

correct direction and negative when it moves too little in the correct direction. This measure

is also negative if a subject updates in the wrong direction.

We next construct a metric to capture the magnitude of an over-update relative to the

magnitude of a Bayesian update. Notice that an over-update of 10 percentage points has dif-

ferent implications if the magnitude of the Bayesian update is 5 percentage points compared

to 40 percentage points. The former represents a relatively large updating error, while the

latter represents a relatively small error. To account for this we normalize the over-update

variable by the magnitude of the Bayesian update:

over-update-ratio :=
over-update∣∣∣π0 − πBayes

1

∣∣∣ . (2)

An update in the wrong direction results in a strictly negative over-update measure and

an over-update-ratio strictly less than one. We address this empirically with a robustness

check that excludes observations with updates in the wrong direction (about 27% of our

observations). We find similar results, so we simply present results from the full sample.
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3.6 Estimating the Grether (1980) Model

The Grether (1980) model is a generalized version of Bayes’ rule that accommodates several

updating biases. In our setting,

π1(σ) =
P (σ|S)απβ

0

P (σ|S)απβ
0 + P(σ|F )α(1− π0)β

,

where α ≥ 0 is the weight that the agent places on the signal and β ≥ 0 is the weight on

the prior. Thus α < 1 represents an under-reaction to a signal and α > 1 an over-reaction.

Meanwhile β < 1 represents base-rate neglect and β > 1 over-weighting the prior.

We can rewrite this model using an odds ratio as

π1(σ)

1− π1(σ)
=

(
P (σ|S)
P (σ|F )

)α (
π0

1− π0

)β

.

This formulation is widely used in the analysis of experimental data because in logarithms

one obtains a model whose parameters can be estimated with a linear regression:

ln
π1(σ)

1− π1(σ)
= α ln

P (σ|S)
P (σ|F )

+ β ln
π0

1− π0

.

Thus, the model permits estimation of the weights that subjects place on prior information

and on information conveyed by the signal.

In our experiment, we are interested in the weights in the High and Low treatments. To

estimate the difference we specify the following regression:

ln
π1(σ)

1− π1(σ)
= (γ0 + γ21H) ln

P (σ|S)
P (σ|F )

+ (γ1 + γ31H) ln
π0

1− π0

+ ε (3)

where 1H is an indicator variable for the High Confidence treatment. We use this specification

to estimate αT and βT for each treatment T ∈ {L,H}:

αL = γ0, βL = γ1, αH = γ0 + γ1, and βH = γ3 + γ4. (4)

While previous studies provide subjects with explicit numerical priors, our subjects must

report their prior beliefs after seeing the grid, thus measurement error may be a concern. To
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address this, we use the actual prior as an instrument for the prior log-odds ratio.19

3.7 Hypotheses

Our primary research question asks how confidence over multiple priors affects how one

updates their beliefs. While standard economic theory predicts that confidence over multiple

priors should not matter, we hypothesize otherwise.

Hypothesis 1. The over-update and over-update-ratio measures are larger for the Low Con-

fidence treatment relative to the High Confidence treatment.

Hypothesis 2. Greater reported confidence (over multiple priors) is associated with lower

over-update and over-update-ratio measures.

Hypothesis 3. Greater weight is placed on prior beliefs in the High Confidence treatment

relative to the Low Confidence treatment. Specifically, in our Grether (1980) regression

equations (3) and (4), βH > βL.

4 Results

We recruited 118 subjects for sessions held in April 2024 at the University of California, Santa

Barbara.20 We paid each subject a $7 show-up fee. The session duration was one hour, with

$17.70 in average earnings. Of the 118 subjects, 70 (59.3%) identified as female and 21 years

was the average age of all subjects. At the beginning of each session, we presented detailed

instructions using slides, subjects were encouraged to ask questions as the instructions were

being read, and they retained hard-copy instructions for reference.

4.1 Experimental Design Validation

We first verify that the subjects understood the experiment and that our method of displaying

the grid for a short duration achieved its intended manipulation.
19The instrumental variable regression was also used by Möbius et al. (2022). Their subjects faced

cognitive tasks of varying difficulty, regarding which subjects then reported beliefs about their performance.
The authors use the task difficulty as an instrumental variable for their log ratio of prior beliefs.

20The UCSB Human Subjects Committee exempted our protocol 69-23-0349. All subjects gave informed
consent. We implemented the experiment in Qualtrics and recruited subjects with ORSEE (Greiner 2015).
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4.1.1 Comprehension of Tasks

Ensuring subject comprehension of our environment is important given our novel confidence-

in-stated beliefs elicitation and general concerns about the comprehension of the BDM (Ca-

son and Plott 2014). To test subjects’ understanding of our confidence elicitation procedure,

we include a task with a degenerate prior (i.e., with zero successful projects) as represented

by a grid with only black squares. One can readily discern that all squares are black, even

when the grid is only displayed for a quarter of a second, as in the Low Confidence treat-

ment. In this task, 115 subjects (97.5%) reported the prior correctly, suggesting that they

understood the task of reporting the prior.21 Next, if a subject understands the confidence

elicitation method, they should report confidence of 100% when the grid contains all black

squares, assuming the subject is indeed confident. Fourteen subjects (11.9%) failed to pro-

vide such reports.22

In total, each subject completed four comprehension checks, reporting a prior and con-

fidence for both Low and High treatments. Thirteen subjects made one error in total, four

subjects made two, while the remaining 101 subjects (85.6%) made no errors. Our subjects

thus generally demonstrate a good understanding of the confidence elicitation task. Ap-

pendix C.1 offers qualitatively similar results for the subsample of subjects who passed these

comprehension checks. We proceed to analyze and present results using the full sample.

Upon completion of the tasks, we ask subjects to state their agreement (on a Likert scale)

with the following: “The more confident that I am in my initial belief about the proportion of

successful projects, the less I should respond to the outcome of the computer test result.”23

Our subjects largely agreed with our overarching hypothesis: 97 of 118 (82.2%) subjects

agree that when they have higher confidence, they should update less (see figure 2).
21That is, three out of 118 total subjects did not report 3% or less when asked about the probability of

a successful project selected from the grid. Two subjects erred only in the Low Confidence treatment, while
one subject erred in both treatments.

22None of these fourteen subjects provided an incorrect prior belief. Four erred only in the Low Confidence
treatment, seven only in High Confidence, and three subjects erred in both treatments. Among the eleven
subjects who erred in only one treatment, seven were 99% confident and ten were at least 95% confident.

23This is in a similar spirit to DellaVigna and Pope (2018), who solicited predictions from academic
experts on their experiment.
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Figure 2: Self-reported relationship between confidence in prior and updating

4.1.2 Accuracy of Priors

Our design induces a prior belief by showing subjects a grid for a limited amount of time.

As a result, subjects may have incorrect prior beliefs. We now present results showing the

accuracy of subjects’ prior beliefs across the two treatments.

As shown in the left panel of figure 3, subjects on average are surprisingly accurate in

stating the actual prior even in the Low Confidence treatment. In the right panel, we plot

the absolute deviation in subjects’ stated priors from the actual prior. As expected, in the

Low Confidence treatment, we see that subjects have highly inaccurate prior beliefs. In

the High Confidence treatment, errors may result from the miscounting of squares or from

the incentives not requiring perfect precision in the stated prior belief. Regardless these

errors should be smaller in the High Confidence treatment, which is exactly what the data

show. Next, displaying the grid for only 0.25 seconds in the Low treatment gives subjects

on average a noisier perception of the actual prior relative to the High treatment; we see

wider confidence intervals for the Low Confidence treatment in the data, as shown in the

right panel of figure 3.
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4.1.3 Confidence over Multiple Priors Across Treatments

Our design varies the display time of grids to induce different confidence levels in a subject’s

prior. We find that subjects’ confidence in their perceived (and hence stated) priors vary in

an expected direction by treatment, shown in figure 4, which demonstrates that subjects are

less confident in the Low Confidence treatment compared to the High Confidence treatment.

Result 0. Subjects in the Low Confidence treatment expressed lower confidence in their prior

compared to the High Confidence treatment.

4.2 Over-updating

We plot both of our over-updating measures (over-update and over-update-ratio) in fig-

ure 5.24 The first result is that subjects under-update relative to the Bayesian benchmark.

This is consistent with the results from Ba, Bohren, and Imas (2022), who found under-

updating relative to the Bayesian benchmark in updating tasks with only two states.25

Result 1. Subjects under-update relative to the Bayesian benchmark in both treatments.

Figure 5 presents how our over-update and over-update-ratio measures vary by treatment,

actual prior, and signal accuracy. Overall the data indicate that the average over-update

and over-update-ratio measures are larger in the Low Confidence treatment for every actual

prior value. The middle panel for the 80% signal accuracy shows a similar pattern, but with

a more pronounced treatment effect.26

Table 1 presents linear regressions for over-update and over-update-ratio, including spec-

ifications both with and without subject fixed-effects. The independent variables include

an indicator for the High Confidence treatment and a constant term. On average we see
24We drop the task in which the prior is degenerate because it involves no updating and our over-update-

ratio is not well-defined.
25Ba, Bohren, and Imas (2022) experiment was a “balls and urn” framing, while ours is the Kahneman

and Tversky (1972a) belief updating problem. This validates their finding across a different framing of
belief-updating tasks.

26We also plot the CDF of the subject average for the over-update and over-update-ratio by treatment,
presented in figure 12 in appendix B. We find that the distribution of the over-update in the Low Confidence
treatment first-order stochastically dominates the distribution of the over-update in the High Confidence
treatment. Regarding the over-update-ratio, the Low Confidence treatment is more likely to have larger
values of this measure.
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Table 1: Ordinary least squares regressions of over-update measures

Dependent variable

over-update over-update-ratio

(1) (2) (3) (4)

High Confidence treatment −3.804 −3.804 −0.251 −0.252
(0.585) (0.585) (0.085) (0.085)

Constant −8.139 −8.139 −0.488 −0.488
(0.876) (0.292) (0.088) (0.042)

Subject fixed-effects No Yes No Yes
R2 0.010 0.013 0.003 0.003
Subjects 118 118 118 118
Observations 2360 2360 2359 2359

Notes: Standard errors (in parentheses) clustered on subject. Observations with undefined log-ratio
dropped.

that High Confidence treatment decreases the over-update measure by 3.8 percentage points

(p < 0.001) and decreases the over-update-ratio by 0.25 units (p = 0.004).

We also perform a non-parametric Wilcoxon signed-rank test to determine whether the

over-update and over-update-ratio differ between the High and Low Confidence treatments.

We find that the distribution of each measure differs between treatments (p < 0.0001 for

each).

Result 2. In the High Confidence treatment subjects exhibit more under-updating relative to

the Low Confidence treatment.

This result is consistent with hypothesis 1. Interestingly, given a noisier prior belief,

subjects better approximate Bayesian updating. Finally, given that we find more under-

updating in the High Confidence treatment, we ask if this effect is driven by confidence over

multiple priors; we investigate this question next.

4.2.1 An Instrumental Variables Regression

We are primarily interested in how confidence over multiple priors affects the degree of

over-updating. However, endogeneity is a concern between our over-updating measures and

confidence measures. Figure 4 shows that prior confidence varies with actual priors. Accurate
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Table 2: OLS and instrumental variable regressions of over-update measures

Dependent variable

over-update over-update-ratio

(1) (2) (3) (4)
OLS FE2SLS† OLS FE2SLS†

Prior confidence, q∗ 0.020 −0.175 0.001 −0.012
(0.021) (0.030) (0.002) (0.004)

Constant −11.670 4.537 −0.717 0.349
(1.723) (2.470) (0.174) (0.340)

First-stage F -stat 320.36 320.36
Subjects 118 118 118 118
Observations 2360 2360 2359 2359

Notes: Standard errors (in parentheses) clustered on subject. Subject fixed-effects included.
Observations with undefined log-ratio dropped. Prior confidence q∗ is measured in percentage
points (between 0 and 100). †Fixed-effect two-stage least squares (FE2SLS) regressions use
an indicator of High Confidence treatment as the instrument.

perception of a prior is more difficult for priors closer to 50%, which naturally results in

lower confidence. Actual priors are also correlated with the over-update and over-update-

ratio measures because updated beliefs are a function of priors. We resolve this endogeneity

problem by using the treatment as an instrument in a generalized two-stage least squares

regression with subject fixed-effects, as presented in table 2. The F -statistic for the first-

stage regression is 320, indicating that our treatment is a strong instrument for our confidence

measure (Stock and Yogo 2005).

The results are consistent with hypothesis 2.27 Columns 2 and 4 show a statistically

significant negative coefficient with the instrumental variable. We find that a percentage-

point increase in prior confidence reduces the over-update measure by 0.175 percentage points

(p < 0.001) and the over-update-ratio by 0.012 units (p = 0.005).

Result 3. Greater under-updating in the High Confidence treatment is due to greater confi-

dence over multiple priors.
27Columns 1 and 3 of table 2 report positive and non-significant coefficient estimates for prior confidence

(the probability report) using an ordinary least squares regression.
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4.3 Grether Model Estimation Results

We now present estimates for the Grether (1980) model, using the IV regression specification

in equations (3) and (4) to study how our subjects respond to our treatments. We employ

the actual prior as the instrument for the log-prior-ratio to account for measurement error in

subjects’ reported prior beliefs.28 The F -statistic for the first stages are all sufficiently large

(> 600), again validating that the actual prior is a strong instrument for the log-prior-ratio.

Table 3 presents results for signal accuracy of 60% (column 1), 80% (column 2), both these

pooled (column 3), and pooled with subject fixed-effects (column 4).29

In the pooled regressions we find that the weight on prior beliefs, β, is larger by about

0.113 units in the High Confidence treatment compared to the Low treatment (Column 3,

p = 0.027), indicating that subjects place more weight on the prior in the High Confidence

treatment. The signal in our experiment did not change across the High and Low Confidence

treatments, thus it is reasonable to expect the weights that the subjects place on the signals

would remain unchanged across the treatments. However, this is not the case. We estimate

that the weight on the signals, α, is smaller by about 0.111 units in the High Confidence

treatment compared to the Low treatment (Column 3, p < 0.001). Our subjects respond to

our treatments by placing more weight on the signals.

We estimate the Grether (1980) parameters by signal accuracy in columns 1 and 2 of

table 3. We see that the overall direction of the results is qualitatively similar. The difference

in the estimated Grether (1980) parameters is greater when the signal accuracy is lower. A

possible explanation is that given a weaker signal, subjects increasingly rely on the signals

more to form their updated beliefs when they have less confidence in their prior beliefs.

We also find that the weight placed on the signal (α) is larger when the signal is weaker.

Although we do not find over-reaction to the 60%-accurate signal, our result is similar to

those of Augenblick, Lazarus, and Thaler (2024), who find that subjects tend to under-infer

from stronger signals. Our design differs from the balls-and-urns framing of Augenblick,

Lazarus, and Thaler (2024); we thus validate these findings across different styles of belief-

updating tasks.
28A subject may misreport their latent prior belief yet use the latent belief for the updated belief.
29Table 7 in appendix C.2 presents the standard Grether regression using ordinary least squares.
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Table 3: Grether model TSLS regressions of log updated belief ratio

Signal accuracy

60% 80% Pooled

(1) (2) (3) (4)

Reduced-form regression:
αL 0.634 0.326 0.349 0.354

(0.113) (0.042) (0.040) (0.041)
βL 0.751 0.774 0.763 0.767

(0.062) (0.058) (0.043) (0.042)
(αH − αL) −0.247 −0.101 −0.111 −0.119

(0.108) (0.032) (0.030) (0.030)
(βH − βL) 0.147 0.080 0.113 0.108

(0.078) (0.067) (0.051) (0.051)

Linear combinations:
αH 0.388 0.224 0.237 0.235

(0.104) (0.041) (0.039) (0.038)
βH 0.898 0.854 0.876 0.875

(0.039) (0.053) (0.033) (0.033)

p-value of F -test:
αL = βL = 1 < 0.001 < 0.001 < 0.001 < 0.001
αH = βH = 1 < 0.001 < 0.001 < 0.001 < 0.001
αH = αL 0.023 0.001 < 0.001 < 0.001
βH = βL 0.059 0.231 0.027 0.035

Subject fixed-effects No No No Yes
First-stage F -stat 2318.53 614.7 1941.18 1929.85
R2 0.662 0.567 0.606 0.608
Subjects 58 60 118 118
Observations 1025 1068 2093 2093

Notes: Standard errors (in parentheses) clustered on subject. Observations with undefined log-ratio
dropped. The null hypothesis of Bayesian updating requires α = 1 and β = 1. Fixed-effect two-stage
least squares (FE2SLS) regressions use an indicator of High Confidence treatment as the instrument.
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While the regression results present estimates of the Grether (1980) parameters at the

aggregate level, we also offer individual-level results. The plots on the left side of figure 6

depict the distribution of αT,s and βT,s for each subject s and treatment T ∈ {H,L}.

The CDF of αT,s for the High Confidence treatment generally lies to the left of the corre-

sponding CDF for the Low Confidence treatment. The CDF of βT,s for the High Confidence

treatment generally lies to the right of the corresponding CDF for the Low Confidence treat-

ment. Taken together, at the individual level, we generally observe larger values of β and

smaller values of α with High Confidence treatment. Further, these graphs depict a mass at

α = 0 and β = 1 in the High Confidence treatment, which corresponds to subject who do

not update their beliefs in any task in the High Confidence treatment. In fact about 35% (41

out of 118) of our subjects do not update their beliefs in the High Confidence treatment.30

We also compute the within-subject difference of αT,s and βT,s between treatments, as

shown in the right-hand side plots of figure 6. Regarding αT,s, most subjects have a negative

difference; these subjects place more weight on the signal in the Low Confidence treatment

than in the High Confidence treatment. Regarding βT,s, most subjects have a positive

difference; these subjects place more weight on the prior in the High Confidence treatment

than the Low Confidence treatment.

Result 4. When updating, subjects place more weight on their prior and less weight on the

signals in the High Confidence treatment than in the Low Confidence treatment.

Overall our estimation of the Grether (1980) parameters shows that our subjects place

more weight on their prior belief in the High Confidence treatment. Thus far our results are

consistent with our hypotheses.

4.4 Noisy Cognition Models

Augenblick, Lazarus, and Thaler (2024) and Ba, Bohren, and Imas (2022) observe consid-

erable over- and under-updating in their experiments, which they rationalize with a noisy
30No updating is a well-documented modal updating pattern. The survey of Benjamin (2019) notes

that about one-third to one-half of individuals do not update whatsoever. Our results echo this empirical
regularity.

26



0

.2

.4

.6

.8

1

C
um

ul
at

iv
e 

pr
ob

ab
ilit

y

-2 -1 0 1 2 3
αT,s

0

.2

.4

.6

.8

1

C
um

ul
at

iv
e 

pr
ob

ab
ilit

y

-3 -2 -1 0 1 2
αHigh,s − αLow,s

Individual-level Estimates of αT,s

0

.2

.4

.6

.8

1

C
um

ul
at

iv
e 

pr
ob

ab
ilit

y

-.5 0 .5 1 1.5
βT,s

0

.2

.4

.6

.8

1

C
um

ul
at

iv
e 

pr
ob

ab
ilit

y

-1 -.5 0 .5 1 1.5
βHigh,s − βLow,s

Individual-level Estimates of βT,s

Notes: Each subject s completes ten updating tasks in each treatment T, permitting within-subject estimation
of the Grether model for each treatment (on the left) and the resultant treatment effect (right).
 

Low Confidence High Confidence Individual Treatment Difference
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the Grether (1980) model
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cognition model. However, our results are not consistent with the existing noisy cognition

model (Woodford 2020; Enke and Graeber 2023).

Noisy cognition models typically have a cognitive default (cognitive prior) over a variable,

in which an agent observes an unbiased cognitive signal that reveals more information about

this variable. The agent then updates their belief over this variable in a Bayesian manner.

A standard assumption on the distribution of the cognitive default and the cognitive signal

density is the “update towards the signal” property (Chambers and Healy 2012). This ensures

that the average posterior belief of the variable is a convex combination of the prior mean

and the realized signal value. The noisy cognition model is attractive because it maintains

a Bayesian updating assumption and can explain behavioral attenuation (Enke et al. 2024).

Previous literature employs the noisy cognition model with two main approaches. The

first approach applies noisy cognition to the primitives of the decision problem. Augenblick,

Lazarus, and Thaler (2024) apply the noisy cognition to the signal conditional probability

where the agent incorrectly perceives the strength of the signal.31 In our context, we will

apply the noisy cognition to the priors, given that subjects do not accurately perceive the

priors. Based on Proposition ??, we know that uncertainty over multiple priors is not going

to affect the average Bayesian posterior belief. Because our over-updating measures are

benchmarked against the Bayesian posterior belief as computed using the subjects’ reported

prior, we should not expect a difference in the over-update ratio and the Grether (1980)

weights if our subjects are updating in the same way across the High and Low Confidence

treatments. However, we found that the over-update ratio is greater in the Low Confidence

treatment, and our estimation of the Grether (1980) model shows that subjects place less

weight on the prior and more weight on the signal in the Low Confidence treatment.

The second approach applies noisy cognition to the optimal action on a continuous action

space (Enke and Graeber 2023), where the action is the report of updated beliefs. Condi-

tioned on the perceived prior, the agent has a cognitive default over regarding the Bayesian

posterior belief and receives an unbiased cognitive signal about the Bayesian posterior.32 In
31As another example in a non-belief updating context, Frydman and Jin (2022) apply the noisy cognition

framework to lottery payoffs.
32Ba, Bohren, and Imas (2022) employs a more general model; their cognitive signal is drawn from a

distribution whose mean is the updated belief as computed using an updating rule that accommodates the
representative heuristic (Kahneman and Tversky 1972b; Bordalo et al. 2020), which nests the Bayesian
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the High Confidence treatment, we should expect a more precise cognitive signal about the

Bayesian posterior. On average, we should expect subjects in the High Confidence treatment

to be closer to the Bayesian benchmark (relative to the Low). Yet our data say otherwise:

subjects in the High Confidence treatment are further from the Bayesian benchmark.

Given that existing noisy cognition models are unable to explain our results, we look

toward alternative models. A simple extension to the Grether (1980) model accommodates

our results—simply allow the exponential weight on the prior, β, to be an increasing function

of the confidence over multiple priors.

4.5 Magnitude of Update

In our presentation of results thus far, we have only considered confidence across multiple

priors. Our experiment also allows us to study our other notion of confidence, which is related

to the dispersion of a belief distribution.33 The actual proportion of successful projects

represents this notion of confidence. Uncertainty regarding the true state (a success or

failure) of the selected project is greater when the proportion of successful projects is closer

to 50%.

Figure 7 depicts an inverse U-shape pattern in the Bayesian beliefs. A Bayesian agent

would have the largest magnitude of update when the prior belief is close to 50%. This

pattern of Bayesian updating is similar when the Bayesian update is computed using the

reported prior belief or the actual prior. Further we see that the magnitude of our subjects’

updates remains similar regardless of the actual prior.34 This pattern of updating behav-

ior is there even when we split our sample by signal accuracy as shown in figure 14 (see

appendix B).

Result 5. Inconsistent with Bayesian updating, subjects update by the same magnitude (in

p.p.) regardless of the actual prior or confidence within the prior distribution.

This suggests that our subjects are insensitive to the amount of uncertainty from a single

prior belief distribution. It seems as if our subjects are using a heuristic where they are

posterior.
33This is exploratory; we did not intend to look at this before collecting the data.
34This explains the U-shaped pattern in our over-update measure in Figure 5.
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Figure 7: Mean Magnitude of Update by Treatment

updating their beliefs by a fixed amount regardless of the prior beliefs they started with.

Our data show that people respond to uncertainty over multiple priors and they do not

respond to the uncertainty over the belief distribution. Both of these results are at odds

with extant theory.

4.6 Overconfidence in Stating Beliefs

Our final set of results categorizes subjects based on their over-confidence in their stated

prior and updated beliefs. For each subject we compute the average reported confidence and

the associated 95% confidence interval for their priors and updated beliefs. We then compute

the proportion of all elicited beliefs (both prior and updated beliefs) that are within three

percentage points of the actual prior or the true Bayesian posterior. We define a subject as

over-confident if the proportion falls above the 95% confidence interval, under-confident if

below, and neutral if within the interval.

Figures 8 and 9 demonstrate that subjects are largely over-confident when it comes
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Figure 10: Mean (continuous) over-confidence measure with 95% confidence intervals

to reporting both their priors and their updated beliefs. Regarding prior beliefs (figure 8),

however, the modal subject is neutral in the High Confidence treatment, with the proportions

of over- and under-confident types being relatively balanced. The vast majority of subjects

are over-confident regarding prior beliefs in the Low Confidence treatment. With respect

to updated beliefs, figure 9 shows that subjects are overwhelmingly over-confident in both

treatments relative to the Bayesian posterior. In general, our subjects could have increased

their expected earnings by reporting lower confidence values.

We also define a continuous measure of confidence for each subject: we take the subject’s

mean stated confidence-in-beliefs and subtract the proportion of elicited beliefs (both prior

and posterior) that are actually within three percentage points of the true value. A positive

value indicates an over-confident subject and a negative value an under-confident subject.

Result 6. Subjects are overly confident in their prior beliefs in the Low Confidence treatment.

Subjects are over-confident in their updated beliefs in both treatments.

Figure 10 shows the mean continuous over-confidence measure.35 Results with the con-

tinuous measure are similar to those with the discrete measure. With respect to the prior,

in the Low Confidence treatment, we see that the average confidence stated by our subjects
35We also plot the distribution of the measure in figure 13 (see appendix B). The vast majority of our

subjects are over-confident, echoing our results.
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is about 37 percentage points more than the proportion in which their stated prior is within

3 percentage points of the actual value. For the High Confidence treatment, we see that our

over-confidence measure is about 3 percentage points and this is not statistically different

from zero (p = 0.0697).

With respect to updated beliefs, we observe more over-confidence than in the case of

prior beliefs. This suggests that people are making mistakes in updating their beliefs and

are over-confident in their ability to update. In the High Confidence treatment, subjects

state confidence that is on average 73 percentage points higher than the actual proportion

of the times their stated beliefs are within three percentage points of the actual Bayesian

belief, while in the Low Confidence treatment, subjects state confidence that is on average

51 percentage points more than the proportion of the times their stated beliefs are within

three percentage of the actual Bayesian belief.

A surprising result is that the degree of over-confidence is significantly larger in the High

Confidence treatment compared to the Low Confidence treatment (p < 0.001). In the High

Confidence treatment subjects have more accurate priors and are more confident in their

prior, yet they are more over-confident in their updated beliefs.

Result 7. Subjects are more over-confident in stating their updated beliefs in the High Con-

fidence treatment.

To further examine this result, we plot the relationship between confidence in prior beliefs

and confidence in updated beliefs. Figure 11 depicts a positive correlation for the mean value

across subjects for each task. The fit of the 45-degree-line is striking (R2 = 0.9168). This

suggests that, on average, their confidence-in-prior-belief directly translates into confidence-

in-updated-belief, implying that subjects may think that they are Bayesian or accurate

in their belief updating process and that their margin of error is within three percentage

points.36 This provides suggestive evidence that the majority of the subjects think that they

are Bayesians when in fact they are not.
36Recall that we informed subjects that they would earn a $3 bonus if their reported updated belief is

within three percentage points of a value computed from a statistical process, Bayes’ theorem. This suggests
that the subjects believe that they update their beliefs consistent with Bayes’ theorem.
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5 Conclusion

Our study is a first to shed light on the critical relationship between confidence in one’s prior

beliefs and belief updating and test it against Bayesian predictions. We find that confidence

over multiple priors matters when it shouldn’t and confidence in a belief distribution doesn’t

matter when it should. Our subjects’ behavior deviates significantly from the Bayesian

prediction.

Our novel design varies subjects’ confidence over multiple priors and elicits incentive-

compatible confidence reports regarding beliefs. We find that greater confidence over multiple

prior beliefs leads to more under-updating when a Bayesian agent should not respond to

this notion of confidence. We find that subjects are insensitive to an alternative notion of

confidence that corresponds to dispersion within a single belief distribution. Our results

contribute to a broader understanding of belief updating, suggesting that confidence over

multiple prior beliefs plays a role in how individuals update their beliefs through the weight

placed on the priors and signals in the updating process.
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Our results also present striking evidence of over-confidence when subjects report both

their prior and updated beliefs. For updated beliefs, we observe a greater degree of over-

confidence in the High Confidence treatment, in which subjects report prior beliefs with

greater accuracy and are more confident in those prior beliefs. This suggests that having more

accurate prior beliefs does not necessarily lead to increasingly accurate updating behavior.

Our finding challenges the notion that having increasingly accurate priors, and confidence in

those priors, inherently results in better-calibrated updated beliefs. We conclude by noting

first our contribution to the elicitation of beliefs literature and second the stylized facts we

present about the relationship between confidence and belief-updating. These facts should

motivate further models of belief-formation processes.
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A Model with n states and Continuum of Priors

Consider a finite state space Ω := {ω1, . . . ωn},37 where the randomly selected project is

either a success or a failure. Suppose the agent considers a set Π0 of possible priors, where

the priors are indexed by an ordered set Θ. We define the continuous probability space

(Θ,F , K), where Θ is the state space, F is the σ-algebra and K is a probability measure.

We define the probability of prior θ at state i as πθ
0,i The agent has a belief distribution over

Π0, assigning subjective probability density kθ
0 to prior θ. Ultimately the agent’s average

prior belief π0,i about the state i being realized is

π0,i :=

∫
θ∈Θ

kθ
0π

θ
0,i.

Let S be the signal space. The agent receives an informative signal σ ∈ S about the

realized state. Define the conditional probability of observing signal σ conditioned on ωi as

P (σ|ωi) ∈ [0, 1]. The posterior belief is also a weighted average of posteriors. To obtain

this posterior, the agent must update each prior πθ
0 to a posterior πθ

1 as well as update

each respective prior weight kθ
0 to a posterior weight kθ

1. Intuitively, the signal provides

information about the state and which prior was the correct prior. However, for a Bayesian

agent, updating with the average priors is equivalent to using the aforementioned procedure.

Proposition 2. The average Bayesian posterior after observing signal σ is

πθ
1(σ) =

∫
θ∈Θ

kθ
1(σ)π

θ
1,i(σ),

which is the same as Bayesian posterior that is updated with the average prior belief.

Proof. Let us update each prior πθ
0 and its respective weight kθ

0 individually using Bayes’

rule to obtain

πθ
1,i(σ) =

πθ
0,iP (σ|ωi)

Pθ(σ)
and kθ

1(σ) :=
kθ
0Pθ(σ)

P (σ)
,

where P (σ) =
∑n

i=1

∫
θ∈Θ kθ

0π
θ
0,iP (σ|ωi) is the probability of observing signal σ given the

mixture prior, while Pθ(σ) =
∫
θ∈Θ πθ

0,iP (σ|ωi) is the probability of observing signal σ given

37We can also generalize this to a continuous state space as well; we define the continuous probability
space (Ω,F , P ), where Ω is the state space, F is the σ-algebra and P is a probability measure.
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prior πθ
0. We now show that updating the beliefs of each prior and the mixture distribution

over these is equivalent to simply updating the average prior belief.

πθ
1,i(σ) =

π0,iP (σ|ωi)

P (σ)

=

∫
θ∈Θ kθ

0π
θ
0,iP (σ|ωi)

P (σ)

=

∫
θ∈Θ kθ

0Pj(σ)π0,iP (σ|ωi)/Pj(σ)

P (σ)

=

∫
θ∈Θ kθ

0Pj(σ)π
θ
1,i

P (σ)

=

∫
θ∈Θ

kθ
1(σ)π

θ
1,i(σ).

B Supplemental Results

Distributions of Over-updating and Overconfidence Figure 12 depicts the distribu-

tion of the average subject over-update and over-update-ratio measures. Figure 13 depicts

the distribution of the average subject continuous over-confidence measure.

Absolute Update by Priors Figure 14 plots the magnitude of the absolute value of

updates for each signal accuracy and treatment pair.

C Robustness Checks

C.1 Exclusion of Subjects Who Made Mistakes

As a robustness check, we exclude subjects who make a mistake. Specifically, we exclude

subjects who in the updating task with a degenerate prior reported either (1) an incorrect

prior or (2) a confidence level, as well as subjects who (3) updated in the wrong direction. Our

over-update measures do well with updating in the wrong direction; this can be interpreted

as severe under-updating. As shown in tables 4 to 6, our results are qualitatively similar
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Table 4: OLS regressions of over-update measures (robustness check)

Dependent variable

over-update over-update-ratio

(1) (2) (3) (4)

High Confidence treatment −3.647 −3.647 −0.266 −0.267
(0.613) (0.613) (0.096) (0.096)

Constant −8.178 −8.178 −0.508 −0.507
(0.940) (0.307) (0.096) (0.048)

Subject fixed-effects No Yes No Yes
R2 0.010 0.013 0.003 0.003
Subjects 101 101 101 101
Observations 2020 2020 2019 2019

Notes: Standard errors (in parentheses) clustered on subject. Observations with undefined log-ratio
dropped. Excludes 17 subjects who failed a comprehension check.

upon excluding subjects who made these mistakes.

C.2 Grether Regression with Ordinary Least Squares

Table 7 presents results for the Grether (1980) model using ordinary least squares. In the

pooled regressions (columns 3 and 4) we find that β is larger by about 0.1 units in the High

Confidence treatment compared to the Low treatment (p = 0.002), indicating that subjects

place more weight on the prior in the High Confidence treatment.

We estimate the parameters for each signal accuracy in columns 1 and 2 of table 7. We

see that the results are qualitatively similar. We find one notable exception: the weight

placed on the signal (α) is larger when the signal is weaker (p = 0.021). Although we do not

find over-reaction to the 60%-accurate signal, our result is similar to those of Augenblick,

Lazarus, and Thaler (2024), who find that people tend to under-infer from stronger signals.38

This validates findings across frames of belief-updating tasks.

38Our design differs from Augenblick, Lazarus, and Thaler (2024) who used “balls and urns” framing.
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Table 5: OLS and IV regressions of over-update measures (robustness check)

Dependent variable

over-update over-update-ratio

(1) (2) (3) (4)
OLS FE2SLS† OLS FE2SLS†

Prior confidence, q∗ 0.015 −0.166 0.002 −0.012
(0.022) (0.031) (0.002) (0.005)

Constant −11.260 3.939 −0.773 0.377
(1.860) (2.630) (0.199) (0.388)

First-stage F -stat 259.83 259.83
Subjects 101 101 101 101
Observations 2020 2020 2019 2019

Notes: Standard errors (in parentheses) clustered on subject. Subject fixed-effects included.
Observations with undefined log-ratio dropped. Prior confidence q∗ is measured in percentage
points (between 0 and 100). Excludes 17 subjects who failed a comprehension check.
†Fixed-effect two-stage least squares (FE2SLS) regressions use an indicator of High Confi-
dence treatment as the instrument.
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Table 6: Grether model TSLS regressions (robustness check)

Signal accuracy

60% 80% Pooled

(1) (2) (3) (4)

Reduced-form regression:
αL 0.586 0.320 0.341 0.348

(0.111) (0.048) (0.045) (0.046)
βL 0.747 0.772 0.759 0.763

(0.066) (0.056) (0.043) (0.043)
(αH − αL) −0.283 −0.093 −0.107 −0.118

(0.116) (0.034) (0.032) (0.033)
(βH − βL) 0.156 0.040 0.099 0.097

(0.082) (0.056) (0.050) (0.050)

Linear combinations:
αH 0.303 0.227 0.234 0.230

(0.101) (0.044) (0.041) (0.041)
βH 0.903 0.812 0.859 0.860

(0.040) (0.054) (0.034) (0.034)

p-value of F -test:
αL = βL = 1 < 0.001 < 0.001 < 0.001 < 0.001
αH = βH = 1 < 0.001 < 0.001 < 0.001 < 0.001
αH = αL 0.014 0.006 0.001 < 0.001
βH = βL 0.059 0.470 0.048 0.052

Subject fixed-effects No No No Yes
First-stage F -stat 2437.11 1835.54 4230.23 4244.52
R2 0.669 0.596 0.627 0.628
Subjects 52 49 101 101
Observations 919 876 1795 1795

Notes: Standard errors (in parentheses) clustered on subject. Observations with undefined log-ratio
dropped. The null hypothesis of Bayesian updating requires α = 1 and β = 1. Fixed-effect two-stage
least squares (FE2SLS) regressions use an indicator of High Confidence treatment as the instrument.
Excludes 17 subjects who failed a comprehension check.
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Table 7: Grether model OLS regressions of log updated belief ratio

Signal accuracy

60% 80% Pooled

(1) (2) (3) (4)

Reduced-form regression:
αL 0.630 0.324 0.348 0.353

(0.114) (0.041) (0.040) (0.040)
βL 0.739 0.723 0.731 0.729

(0.045) (0.047) (0.033) (0.034)
(αH − αL) −0.245 −0.102 −0.112 −0.119

(0.110) (0.031) (0.030) (0.030)
(βH − βL) 0.133 0.082 0.107 0.095

(0.041) (0.040) (0.029) (0.029)

Linear combinations:
αH 0.386 0.222 0.236 0.234

(0.105) (0.041) (0.039) (0.038)
βH 0.872 0.806 0.838 0.824

(0.032) (0.043) (0.027) (0.028)

p-value of F-test:
αL = βL = 1 < 0.001 < 0.001 < 0.001 < 0.001
αH = βH = 1 < 0.001 < 0.001 < 0.001 < 0.001
αH = αL 0.030 0.002 < 0.001 < 0.001
βH = βL 0.002 0.047 < 0.001 0.002

Subject fixed-effects No No No Yes
R2 0.674 0.584 0.622 0.638
Subjects 58 60 118 118
Observations 1025 1068 2093 2093

Notes: Standard errors (in parentheses) clustered on subject. Observations with undefined log-ratio
dropped. The null hypothesis of Bayesian updating requires α = 1 and β = 1.
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